On a Special Form of(h) hν-Torsion TensorPijkin Finsler Space
نویسندگان
چکیده
منابع مشابه
on a special class of finsler metrics
in this paper, we study projective randers change and c-conformal change of p-reduciblemetrics. then we show that every p-reducible generalized landsberg metric of dimension n 2 must be alandsberg metric. this implies that on randers manifolds the notions of generalized landsberg metric andberwald metric are equivalent.
متن کاملContact structures on the indicatrix of a complex Finsler space
Continuing the study of the complex indicatrix IzM , approached as an embedded CR hypersurface on the punctual holomorphic tangent bundle of a complex Finsler space, we study in this paper the almost contact structures that can be introduced on IzM . The Levi form and characteristic direction of the complex indicatrix are given and the CR distributions integrability is studied. Using these we c...
متن کاملConformal change of special Finsler spaces
The present paper is a continuation of the foregoing paper [16]. The main aim is to establish an intrinsic investigation of the conformal change of the most important special Finsler spaces. Necessary and sufficient conditions for such special Finsler manifolds to be invariant under a conformal change are obtained. Moreover, the conformal change of Chern and Hashiguchi connections, as well as t...
متن کاملGeneral very special relativity is Finsler geometry
G. W. Gibbons, Joaquim Gomis, and C. N. Pope DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, Cambridge CB3 OWA, United Kingdom Departament ECM, Facultat de Fı́sica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A&M University, College Station, Texas 77843-4242, USA (Rece...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics
سال: 2016
ISSN: 2314-4629,2314-4785
DOI: 10.1155/2016/3694017